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5 Numerical Modeling 

Modeling has been a useful tool for engineering design and analysis.  The definition 

of modeling may vary depending on the application, but the basic concept remains the 

same:  the process of solving physical problems by appropriate simplification of 

reality.  In engineering, modeling is divided into two major parts: physical/empirical 

modeling and theoretical/analytical modeling.  Laboratory and in situ model tests are 

examples of physical modeling, from which engineers and scientists obtain useful 

information to develop empirical or semi-empirical algorithms for tangible 

application.  Theoretical modeling usually consists of four steps.  The first step is 

construction of a mathematical model for corresponding physical problems with 

appropriate assumptions.  This model may take the form of differential or algebraic 

equations.  In most engineering cases, these mathematical models cannot be solved 

analytically, requiring a numerical solution.  The second step is development of an 

appropriate numerical model or approximation to the mathematical model.  The 

numerical model usually needs to be carefully calibrated and validated against pre-

existing data and analytical results.  Error analysis of the numerical model is also 

required in this step.  The third step of theoretical modeling is actual implementation 

of the numerical model to obtain solutions.  The fourth step is interpretation of the 

numerical results in graphics, charts, tables, or other convenient forms, to support 

engineering design and operation. 

With increase in computational technology, innumerable numerical models and 

software have been developed for various engineering practices.  Numerical modeling 

has been used extensively in industries for both forward problems and inverse 

problems.  Forward problems include simulation of space shuttle flight, ground water 

flow, material strength, earthquakes, and molecular and medication formulae studies.  

Inverse problems consist of non-destructive evaluation (NDE), tomography, source 

location, image processing, and structure deformation during loading tests.  Although 
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numerical models enable engineers to solve problems, the potential for abuse and 

misinformation persists.  Colorful impressive graphic presentation of a sophisticated 

software package doses not necessarily provide accurate numerical results.  

Fundamental scientific studies and thorough understanding of the physical 

phenomena provide a reliable and solid guideline for engineering modeling.  In this 

project, the focus is on the thermo effects of drilled shafts after the placement of 

concrete, and performance under various loading conditions.  The numerical models 

developed in this project are based on well-developed theories and constitutive laws 

in chemical and civil engineering, as well as numerical methods widely accepted in 

engineering.  The numerical results are also carefully analyzed against existing 

laboratory test data. 

5.1 Establishment of Numerical Model 

Modeling is fundamentally the core of engineering.  A model is an appropriate 

simplification of reality.  The skill in modeling is to spot the appropriate level of 

simplification, distinguish important features from those that are unimportant in a 

particular application, and use engineering judgment.  There is a long history of 

empirical modeling in civil engineering.  Due to difficulties in obtaining accurate 

material properties of in situ earth materials and construction materials, most civil 

engineering is based on experience--although many techniques are semi-empirical 

rather than purely empirical.  For this reason, the development of more rigorous 

modeling tools has lagged behind the demands of industry.  In this project, 

advancements in computational techniques, civil engineering, and material science 

are incorporated into a theoretical/mathematical numerical model based on the 

analysis of physical phenomena and constitutive laws for the application of drilled 

shafts in roadway/highway engineering. 
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5.2 Theoretical Models 

The description of most engineering problems involves identifying key variables and 

defining how these variables interact.  The study of theoretical modeling involves two 

important steps.  In the first step, all the variables that affect the phenomena are 

identified, reasonable assumptions and approximations are made, and the 

interdependence of these variables is studied.  The relevant physical laws and 

principles are invoked, and the problem is formulated mathematically.  In the second 

step, the problem is solved using an appropriate approach (in this project, an 

appropriate numerical approach) and results are interpreted. 

The fundamental principles and constitutive laws of material behavior have been 

thoroughly investigated for engineering purposes.  This makes it possible to predict 

the course of an event before it actually occurs, or to study various aspects of an event 

mathematically without actually running expensive and time-consuming experiments.  

Very accurate results to meaningful practical problems can be obtained with 

relatively little effort by using suitable and realistic mathematical/numerical models.  

However, the preparation of such models requires an adequate knowledge of the 

natural phenomena and relevant laws, as well as sound judgment. 

Theoretical modeling leads to an analytical solution of the problem.  For this reason, 

engineering problems are often described by differential equations.  An engineer 

often has to choose between a more accurate but complex model, and a simple but 

relatively less accurate and over-generalized model.  Available computational 

technology and techniques provide engineers the option of exploring complex 

numerical models.  A numerical solution usually implies the replacement of a 

continuous description of a problem by one in which the solution is only obtained at a 

finite number of points in space and time.  In this project, the quality of the numerical 
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approach is verified by applying the numerical model to a situation for which an exact 

solution is known. 

However, mathematical/numerical modeling does not eliminate the indispensable 

experimental approach to physical modeling.  The experimental approach provides 

observations of actual physical phenomena.  Physical modeling is fundamental in the 

development of civil engineering.  Many theoretical and empirical models are based 

on the interpretation of experimental results.  Physical modeling validates the 

theoretical and empirical hypotheses.  However, this approach is expensive, time-

consuming, and not always practical in engineering. 

The theoretical models and technical approaches employed in this project to model 

the drilled shaft in highway engineering are:  a) thermal modeling; b) engineering 

mechanics; c) numerical model of discrete element method (DEM) and d) validations 

of numerical models. 

5.3 Thermal Modeling 

It is well known that the thermal behavior, temperature distribution, and residual 

stresses/strains in the shaft during concrete placement significantly affect the 

performance and strength of the support.  In this section, heat transfer and the 

resulting temperature gradient will be discussed.  A chemical model and heat transfer 

model were implemented together with a mechanics constitutive model to simulate 

conditions of the concrete shaft while curing. 

During the concrete curing (hydration) process, heat generates inside of the concrete.  

This heat transfers from regions of higher temperature to regions of lower 

temperature, such as the surrounding environment.  The non-uniform temperature 

gradient causes variations in shrinkage strains and generates cracks in the shaft.  

Common guidelines specify a 20o C (35o F) temperature gradient rule, restricting the 
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maximum temperature difference in the concrete.  The 20o C rule may not truly reflect 

all situations, as the heat of hydration, thermal conductivity, tensile strength, 

modulus, and density of concrete changes as a function of time.  Contractors often 

find difficulty maintaining high concrete strength by using a higher percentage of 

cement paste, which generates more heat, and still satisfy the temperature gradient 

rule.  The heat transfer model employed in this project tries to combine curing 

chemistry, aging, thermal behavior, and mechanical strength of concrete to provide a 

better understanding of the concrete curing process so that appropriate engineering 

limits may be developed for temperature and quality control. 

The rate of heat generation during concrete curing varies with temperature and time.  

The temperature inside a shaft varies with time, as well as position.  This variation is 

expressed as: 

 T(x, t),               (5.1) 

where  

x is the position vector 

t is time 

The conductivity of concrete during curing varies with time and position, expressed 

as: 

k(x,t)               (5.2) 

This case is a typical nonlinear unsteady 3D heat conduction problem.  Unfortunately, 

an analytical solution of the problem does not exist, except for overly simplified 

conditions.  Numerical modeling can provide an efficient technical approach for this 

problem.  In order to accurately model the thermal behavior during the curing 

process, a modified 3D explicit finite difference model is used as the numerical 
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method in this study.  Basic principles of the numerical solution and algorithm are 

presented in this section.  Note that heat transfer by convection is considered, but heat 

transfer by radiation is not considered in this study. 

The 3-dimensional heat conduction equation is expressed as: 

TcgTki
&& ρ=+∇∇ )(      (5.3a) 

Or, in the rectangular coordinate system as: 
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Where  

T(x, t) is the temperature distribution function with element control 

volume as dxdydz 

ki(x,t) is the thermal conductibility in corresponding directions, 

respectively 

( )tg ,x&  is the rate of energy generation in the control volume 

ρ is density of the material 

с is specific heat (The heat capacity per unit of mass of the object) 

x is position vector variable, explicitly expressed as x, y and z in 

rectangular coordinates 

t is time 

The solution of equation (5.3) gives the temperature distribution in the material at 

different times.  The temperatures obtained are used as input to the concrete curing 

chemistry model and engineering mechanics model to determine concrete 

tension/compression strength and thermal stresses/strains.  Crack formation occurs 



 
 
 
 
 

 158

when the tension stress is larger than the tension strength at a certain position.  Cracks 

are simulated by breaking the connection between the material points.  Micro-cracks 

develop and propagate inside the concrete as more connections are broken.  These 

defects are taken into account for the concrete shaft loading and performance 

analysis.  The model in this project is developed to represent history dependent 

material behavior. 

Equation (5.3) is a non-linear unsteady heat conduction equation.  Various numerical 

methods have been developed for the finite solution.  One of the most popular is the 

finite difference method, which discretizes the domain into a finite mesh or grid.  

Equation (5.3) is solved on the mesh nodes together with boundary and initial 

conditions.  The accuracy and efficiency of the solution depend on the discretization 

method, mesh size, and numerical integration algorithm.  Generally, the mesh size is 

cubic in rectangular coordinates, or curved cubic in cylindrical or spherical 

coordinates.  In this project, a modified finite different solution was developed with 

mesh nodes connected in a tetrahedral packing form that matches the mechanics 

numerical analysis algorithm.  Figure 5.1 shows a portion of a 2D and 3D thermal 

resistance network mesh and nodes connection for heat conducting calculations. 

The solution algorithm is based on the well known thermal resistance concept in 

thermal dynamics.  Heat conduction is analogous to the relation for electric current 

flow as shown in Figure 5.1.  According to Fourier’s law of heat conduction, the rate 

of heat conduction through a plane layer is proportional to the temperature difference 

across the layer and the heat transfer area, but is inversely proportional to the 

thickness of the layer.  Assume that at given time the distance between two adjacent 

nodes is xΔ , the temperature difference is TΔ , which equals to the temperature at 
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Figure 5.1  2D and 3D Thermal Network Mesh for Heat Conducting 
Calculations 

 
node 1 ( 1T ) minus the temperature at node 2 ( 2T ).  Defining the heat conduction area 

between two nodes as A gives: 

x
TTkA

x
TkAq

Δ
−

=
Δ
Δ

= 21&      (5.4) 

where 

k is thermal conductivity, a function of time and location. 

By using the thermal resistance concept, equation (5.4) can be rewritten as: 

nini R
TT

R
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−
=

Δ
= 21&       (5.5) 

where 

niR −  is thermal conduction resistance between node i and node n: 



 
 
 
 
 

 160

kA
xR ni

Δ
=−        (5.6) 

Assuming that the conduction area A is constant between two nodes, and the mesh 

grid size is generated equally so that xΔ is constant, niR −  is only a function of k.  In 

thermal modeling niR −  is the variable vector of time and position.  niR −  is 

appropriately defined based on the concrete curing chemistry model.  For 3D 

tetrahedral packing connections, each node is connected to twelve other neighbor 

nodes to form a thermal resistance network covering the model domain. 

Assuming the initial temperature of concrete at placement is 0T , and assuming the 

heat generated by a unit concrete mass while curing is q (a function of concrete 

hydration rate), the temperature raised by unit mass due to the generated heat energy 

is: 

c
qT =Δ        (5.7) 

where 

TΔ  is the temperature change per unit concrete mass due to the heat 

generated in hydration 

c is the specific of heat of concrete 

The specific heat is defined as the energy required to raise the temperature of a unit 

mass of a substance by one degree.  Specific heat is a material property and is 

physically measured at constant volume ( vc ) or constant pressure ( pc ).  Generally it 

is a function of temperature, though the change is small.  Since concrete changes from 

a “fluid” state to a solid state while curing, the specific heat also changes 

correspondingly.  For this reason, the specific heat is also a function of hydration.  In 
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this study, the change of specific heat is assumed to be linear to the non-linear 

hydration rate. 

 

After the temperatures at each calculation mesh node are known, equation (5.5) is 

used to calculate the heat transfer rate between nodes.  The heat energy at each node 

is updated correspondingly, based on the heat transfer rate changes.  The new heat 

energy is then used to update the temperature of each node.  Since the numerical 

modeling is based on a dynamic algorithm, and the temperature of boundary nodes 

are constrained by boundary conditions, the boundary conditions are correspondingly 

satisfied in the simulation. 

5.4 Engineering Mechanics 

In this section, the basics of the engineering mechanics principles involved in the 

modeling and analysis of this project are briefly presented.  Since design 

philosophies, failure criteria, load capacity evaluation methods, and building codes 

for drilled shafts have been well defined in highway/roadway and civil engineering in 

AASHTO publications and other engineering resources, these topics will not be 

repeated.  The focus is on the mechanical properties of concrete and soil, their 

relation to stress wave propagation in these materials, and the effect of thermal 

cracking and other defects to the performance of drilled shafts. 

When an impact load is applied to a body, the deformation of the body due to the load 

will gradually spread throughout the body via stress waves.  The nature of 

propagation of stress waves in an elastic medium is extremely important in 

geotechnical and geophysical engineering.  Even though the materials encountered in 

geotechnical and geophysical engineering can hardly be called “elastic”, the theory 

developed for an elastic medium is very useful and satisfactory in signal processing 

and inverse problem analysis.  It is also widely used to determine material properties 
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such as elastic modulus and shear modulus, and other design parameters of dynamic 

load-resistant structures. 

From continuum mechanics theory, the equation of motion in an elastic medium can 

be written as: 

2
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where 

ijσ is the stress tensor 

iu is the displacement vector 

ρ is the density of the material 

By substituting the elastic stress-strain relationship into the equation of motion and 

re-arranging the equations, the elastic compression stress wave equation becomes: 
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where 

 p is the pressure 
2∇  is the Laplacian 

pc is the P-wave velocity 

The elastic shear stress wave equation can be expressed as: 
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where 
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iω is the rotation vector 

sc is the S-wave velocity 

From the above equations, the relationship of P-wave and S-wave velocity and elastic 

material properties are defined as: 
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where 

E is the elastic modulus 

G is the elastic shear modulus 

λ is the Lame constant 

μ is the Poisson’s ratio 

Note that the material constants during concrete curing are a function of time and 

temperature.  The actual values applied for the calculations in this project are based 

on the concrete curing chemistry modeling results. 

The visco-elastic model is considered a better approach to wave propagation in geo-

materials since the amplitude of the source wave attenuates with distance.  The 

corresponding visco-elastic wave equation can be derived based on the equation of 

motion with a damping force: 
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where 

c  is damping coefficient of the medium. 

The solutions of equations (5.9) and (5.10) describe wave propagation in an elastic 

medium.  In geophysics, the finite difference method (FD) is the most common 

numerical method chosen for the solution.  Various numerical schemes can be 

considered for the finite difference solution.  For a 3D problem, various schemes 

include cubic rectilinear, octahedral, interpolated rectilinear, or tetrahedral, depending 

on the specific problem and desired accuracy.  In this project, a non-linear visco-

elastic model is used for the wave propagation calculations. 

Thermal stress calculations during concrete curing are based on chemistry modeling.  

The stress depends on curing temperature, concrete strength and strain at different 

curing stages.  The relationship between the rate of change of the temperature and 

strain with heat conduction is given by: 

t
T

t
TC

x
Tk

x
ij

ijv
j

ij
i ∂

∂
+

∂
∂

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∂
∂ ε

βρ      (5.14) 

where 

ijβ  is a material constant proportional to the temperature change 

ijk  is the thermal conductivity matrix 

vC  is the specific heat per unit mass measured in the state of constant 

strain 

ρ is the density of the material 

ijε  is the strain tensor 

T  is the temperature 
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Again the material constants of concrete during curing depend on the temperature and 

the time.  The constant values are obtained from concrete curing chemistry modeling 

and analysis. 

To complete the specification of the mechanical properties of a material, additional 

constitutive equations are developed for the concrete curing process.  The mechanical 

constitutive equation of a curing concrete specifies the dependence of stress on 

kinematics variables such as the rate of deformation tensor, temperature and other 

thermodynamics, electrodynamics, and chemical variables.  Since this study focuses 

on engineering application, more effort is concentrated on the simplification of 

currently available theoretical equations, and calibration of numerical models to meet 

the accuracy of engineering practice.  Detailed descriptions of the technical 

approaches for concrete and soil is presented in the following sections. 

5.5 Discrete Element Method (DEM) Background 

Numerical modeling of the discrete element method and its application is presented.  

As discussed earlier, most mathematical equations established in theoretical modeling 

cannot be solved analytically, requiring a numerical solution.  The development and 

selection of an appropriate numerical model is a key step for the successful 

application.  Many numerical methods have been developed to solve different 

engineering problems, such as the Finite Element Method (FE), Finite Difference 

Method (FD), Boundary Value Problem (BV), Discrete Element Method (DEM), 

Material Point Method (MPM), etc.  No single numerical method has been shown to 

be sufficient for all engineering problems.  Each method has advantages and 

limitations for particular problems.  The more physical phenomena are understood, 

the better numerical techniques can be developed and applied.  In this project, the 

discrete element method (DEM) is employed based on the following considerations: 
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• Simplicity: the algorithm is simple to implement. 

• Efficiency: the data structure of DEM is based on a mesh free principle, 

resulting in efficient computation and memory usage.  The numerical model 

can be run on normal PC environments at high resolution. 

• Flexibility: the model is originally designed for dynamics problems, such as 

wave propagation, contact/impact, and vibration problems.  It can be easily 

modified to solve other problems, such as statics problems with dynamic 

relaxation, heat transfer problems with thermal resistance, seepage problems 

with friction losses, etc.  The model simplifies generation of different 

geometrical shapes and boundary conditions. 

• Extensibility: the model can be easily extended for geotechnical engineering 

applications such as slope stability, ground-foundation interactions, rock falls, 

tunneling/mining operations, avalanche study, as well as granular flow 

problems in chemical engineering and agricultural industries. 

DEM, as well as any other numerical method, has limitations in engineering 

applications.  Since the modeling domain of DEM is discretized into distinct particles 

which contact each other at their contact faces, the contact constitutive equations 

between particles determine the global mechanical responses of the whole particle 

assembly.  The simplest contact constitutive model is represented by spring-dashpot 

model for a normal contact, and Coulomb friction model for shear force, as shown in 

Figure 5.2.  Although these constitutive models do not necessarily have to be linear 

and elastic, the model currently uses linear and elastic deformation unless the 

particles are totally detached.  For the same discretization scheme of DEM, each 

individual particle is considered a “rigid” body.  There is no deformation for 

individual particles.  If such deformation is desired, a combined approach of DEM 

with other numerical methods such as FE or BV is usually used.  The contact 
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constitutive model in this project is based on a non-linear contact mechanics model 

between two spheres. 

 
Figure 5.2  Visco-Elastic Contact Model for DEM 

5.5.1 Discrete Element Method Definition 

The discrete element method (DEM) is a numerical technique designed to solve 

problems in applied mechanics that exhibit gross discontinuous material and 

geometrical behavior.  DEM is used to analyze multiple interacting rigid or 

deformable bodies undergoing large dynamic or pseudo static, absolute or relative 

motion, governed by complex constitutive behavior. 

DEM essentially is based on the numerical solution of the equation of motion and the 

principle of dynamic relaxation.  Kinematics equations are established for each 

discrete body.  The velocities, accelerations, and positions of the bodies are updated 

by calculating the contact forces between them.  Depending on different physical 

problems, DEM programs should at least include the following three aspects: 

• Representation of contact, which attempts to establish a correct contact 

constitutive model between discrete bodies. 

• Representation of the properties of materials, which defines the particles or 

blocks to be rigid or deformable. 
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• Contact detection and revision of contacts, which attempts to establish certain 

data structures and algorithms to asses the contacts and the contact types, such 

as whether the vertex, edge or face of one polyhedron will touch a 

corresponding entity on a second polyhedron. 

The following section discusses the discrete element method specifically related to 

this project, which discretizes the particles as 3D spheres that contact each other at 

their surfaces.  Some general features of DEM are also included in this section. 

5.5.2 Equation of Motion 

Figure 5.3 shows two blocks I and II in contact.  Their positions are defined by 

vectors R1 and R2.  The blocks have masses m1 and m2, linear velocity vectors v1 and 

v2, and angular velocity vectors 1ω  and 2ω .  The equation of motion for element i at 

discretized time step n is: 

( ) i
n

i
ni

i
ni

i
ni fxPvCaM =++      (5.15) 

where 
i
nx , i

nv and i
na  are the position, velocity and acceleration vectors of the 

ith element at the nth time step, 
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iM and iC are the mass and damping matrices. 
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iP and 
i
nf  are the resultant contact force and applied boundary 

force/body force, respectively. 

The formula for contact force depends on the particular constitutive laws 

applied to the problems.  A modified Hertz-Mindline contact law and visco-

elastic contact law are discussed later in “Contact Mechanics”. 

 

Figure 5.3  Blocks in Contact 

 
Numerically solving equation (5.15) in the time domain gives accelerations, 

velocities, displacements and resultant forces.  The stress/strain relationship inside of 

the discrete assembly is obtained by an averaging method.  The average stress tensor 

of the volume V of the representative of volume element (RVE) can be obtained by:  
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      (5.17) 

where 
c
ix  is position vector at contact point c 

c
jF  is contact force vector at contact point c 

N is the particle number in RVE 

mp is the number of contact points for particle p 

Similarly, the average strain of the RVE defined for infinite deformation can be 

written (by the Average Displacement Gradient Algorithm) as:  

( )jiijij FF +=
2
1ε       (5.18) 

where 

ijF  is contact force 

There are different numerical integration algorithms for solving equation (5.15).  The 

explicit integration algorithm is among the most used schemes in current discrete 

element analysis.  In this project, central different explicit expressions are used for the 

acceleration at time step interval h for velocity and displacement updates.  The 

velocity update equation is: 
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and the displacement update equation is: 

 

2/11 ++ += nnx hvxx       (5.20) 

Where the symbols are the same as in equation (5.15) 

The explicit integration algorithm used in DEM analysis is quite simple and 

straightforward compared to implicit schemes.  However, this algorithm is only 

conditionally stable.  The time step must be adequately small to maintain stability 

conditions. 

When the algorithm is used to solve static (or pseudo static) problems, dynamic 

relaxation procedures (DR) must be performed in order to achieve rapid convergence.  

To obtain static solutions, one should properly select the damping coefficient C, the 

time increment step h, and the mass matrix M, to obtain efficient convergence, 

determining x  such that ( ) fxP = .  Several approaches are available for determining 

the optimum convergence rate from which the optimum damping parameters will be 

obtained.  These techniques are based on numerical error analysis of calculated value 

and residual of the solution.  One of the approaches is developed by Bardet et al.  In 

this project, a trial and error numerical procedure is developed for fast dynamic 

relaxation.  The procedure is based on the equilibrium principle, when the assembly 

system is under static state in equilibrium.  Numerical tests show that the equilibrium 

trial and error method is more efficient for static problems such as consolidation of 

soil, shaft loading tests, and other pseudo static problems. 

5.5.3 Contact Mechanics 

Since the DEM numerical scheme discretizes the object of interest into individual 

particles (or blocks) that connect or contact each other through their boundaries, the 
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connecting or contacting forces, and other variables of the particles, must be properly 

defined to accurately represent physical properties of the object.  These variables 

include the packing form of the particle assembly, particle size distribution, density of 

the particles, internal configuration of particle mass, and response under different 

load conditions.  The relationship between stress and strain and continuum equivalent 

of the object may be derived from the study of the force-displacement behavior 

between the individual particles, by using the averaging method of the representative 

volume element (RVE), as described earlier.  The force calculations may vary based 

on different engineering problems, and may include calculations of normal force, 

shear force, friction, moment, and torsion of each particle at contact points.  

Traditionally, the contacts are considered to be elastic, so that the theory of contact of 

elastic bodies can be invoked to furnish a description the physical phenomena.  

Elastic models are widely used in DEM because the forces required to crush 

individual particles are much larger than the forces required to make the whole 

particle assembly fail, and that deformations of the individual particles are much 

smaller than that of the whole assembly.  A well known non-linear elastic model is 

the Hertz-Mindlin contact model.  The visco-elastic and perfect plastic model are also 

widely accepted in DEM.  Both Hertz-Mindlin and visco-elastic models are described 

in this section.  Note that some plastic incremental models have been proposed in 

recent years.  These models have been very successful to describe contact problems in 

mechanical engineering.  Since these models are stress history dependent and require 

significant memory to store the history of each contact of the assembly, they are not 

widely implemented in DEM simulations. 

5.5.3.1 Non-Linear Hertz-Mindlin Contact Model 

The Hertz-Mindlin model begins by assuming that contacting solids are isotropic and 

elastic, and that the representative dimensions of the contact area are very small 

compared to the various radii of curvature of the undeformed bodies.  Another 
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assumption of the Hertz-Mindlin model is that the two solids are perfectly smooth.  

Only the normal pressures that arise during contact are considered (the extensions of 

Hertz theory for the tangential component of traction will be discussed later).  The 

Hertz-Mindlin contact-force-displacement law is nonlinear elastic, with path 

dependence and dissipation due to slip, and omits relative roll and torsion between the 

two spheres.  Strictly speaking, the simplified contact force-displacement law is 

thermodynamically inconsistent (i.e., unphysical), since it permits energy generation 

at no cost.  The law is widely used in engineering because of its simplicity.  For the 

particle assembly, the contact forces and displacements are infinite, and the 

approximation satisfies the accuracy of engineering applications. 

The normal force-displacement relationship of the Hertz-Mindlin law is: 
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where (as shown in Figure 5.4 and Figure 5.5) 

N is normal force 

ρ is the relative approach of the sphere (Figure 5.4) 

0R  is the average radius of two contact spheres 

210

111
RRR

+=       (5.22) 

where 

1R  and 2R  are the radii of sphere 1 and sphere 2, respectively 

0E  is the average modulus of the materials of two contact spheres 
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where 

1E  and 2E  are Young’s modulus 

1ν , 2ν  are Poisson’s ratio of sphere 1 and 2, respectively 

 

Figure 5.4  Identical Elastic Rough Spheres in Contact 

Tangential force-displacement is one of the important extensions of the Hertz contact 

law, which addresses problems involving additional force systems superimposed 

upon the Hertz normal force.  By solving the appropriate boundary-value problem, 

Cattaneo and Mindline derived expressions for the tangential component of traction 

on the contact surface, and the displacement of points on one sphere, remote from the 

contact, with respect to similarly situated points in the other sphere.  Physical 

experiments show that slip occurs between two contact spheres no matter how small 

the applied tangential force.  When the tangential force is completely removed, the 
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slip does not vanish.  A permanent displacement appears.  This displacement can be 

removed only by applying a tangential force in the opposite direction.  For this 

reason, the tangential forces are calculated separately for different cases.  Three cases 

in tangential force-displacement calculations are considered:  

 increasing tangential force 

 decreasing tangential force  

 oscillating tangential force 

 

Figure 5.5  Hertz Contact of Solids of Revolution 

 
Case 1.  The tangential force-displacement relationship of increasing tangential force 

with consideration of slip conditions is given by: 
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where  

δ  is relative displacement proportional to the tangential applied force 

ν  is Poison’s ratio 

G is shear modulus of the material 

a  is contact area of two contact spheres 

N is normal force obtained from equation (5.21) 

f  is coefficient of static friction 

T is applied tangential force in contact plane 

 

Case 2.  The tangential force-displacement relationship of decreasing tangential force 

with consideration of slip conditions is given by: 
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where 

uδ  is relative displacement proportional to the unloading tangential 

applied force 

sT  is the tangential force at peak value fNTs <<0  

Case 3 considers oscillating tangential force-displacement relationship.  A subsequent 

increase of T from - sT  to sT  will give rise to identical events as occurring in the 

course of the reduction of T from sT  to – sT , except for the reversal of sign.  The 

appropriate displacement during this loading process will be ( )Tul δδ = . 

5.5.3.2 The Visco-Elastic Contact Model 

The visco-elastic contact model is the simplest contact model used in DEM 

simulations.  Because of its simplicity, the calculations are very efficient.  Usually, 
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the stresses causing the failure of particle assemblies due to the relative friction and 

slip between the particles are much lower than the stresses required to crush 

individual particles.  The assumption of a linear elastic contact force-displacement 

relationship between two particles is a good approximation, and is still widely used in 

engineering.  The mechanical model is shown in Figure 5.2. 

The normal contact formulation is linear elastic with a viscous damper characterized 

by two parameters:  normal stiffness nk  and viscosity C.  The model works for both 

compression and tension forces based on the relative distance between the two 

contact points.  The normal force is defined by: 

⎪⎩

⎪
⎨
⎧ +⋅

=
0
2
1

rnn Ck vn
N

ε
  

max

max||0
εε

εεε
−<

−≥≥
   (5.26) 

where 

ε  is the penetration distance between two contact points.  For two 

spheres, ε  equals the sum of two sphere’s radii minus the 

distance between the two contact sphere centers. 

maxε−  is the maximum tension distance two neighboring particles.  If 

negative penetration is larger than this value, the connection 

between the two neighbors are disconnected, and tension force 

between thess two particles is set to be zero. 

n is the normal unit vector at the contact point 

rnv  is the normal relative velocity vector at the contact point 

 nk  is the normal contact stiffness 

C is the viscosity of the material 
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The tangential force depends on the friction of the material and the relative tangential 

velocity of the two contact particles.  The formula of the tangential force is defined 

as: 
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where 

sk  is the shear contact stiffness 

f is the coefficient of static friction 

rsv  is the tangential relative velocity vector at the contact point 

The direction of the tangential force is the reverse of the tangential relative velocity.  

The magnitude of tangential force is equal to the maximum static friction force, if it is 

bigger than the Coulomb friction force, which is the second term of equation (5.27). 

The key to successful modeling using DEM is proper selection of the stiffness and 

damping coefficients.  Theoretically, the damping coefficient can be derived from 

material properties such as the restitution coefficient: 
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where 

im  and jm  are the masses of particles i and j, respectively. 

e is the restitution coefficient of the material 

nk  is the normal contact stiffness 
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To relate the stiffness to material properties, a number of trial and error numerical 

tests are performed.  The procedures are based on the principle of elastic wave 

propagation in a medium, which are widely used to determine elastic constants of 

materials in laboratories.  In the numerical tests, the particles are assembled in 

different packing forms, and elastic stress waves are generated.  The wave 

propagation velocities are measured at different points for different stiffness.  The 

stiffness is checked against the wave velocity obtained from material property 

manuals and laboratory data.  The stiffness is then calibrated correspondingly and 

saved in a database for future modeling. 

5.5.4 Validation of Numerical Models 

Before the numerical model is applied to solve engineering problems, it is used to 

simulate some small scale problems and simple cases for which the results are known 

or can be easily obtained, for verification.  Some constants and parameters must be 

pre-defined or calibrated based on material properties and specified conditions.  In 

this project, the validity of the numerical modeling has been checked in three 

different ways before being used for large scale problems: 1) energy conservation; 2) 

dynamic relaxation and 3) elastic wave propagation. 

5.5.4.1 Energy Conservation 

First, an energy method was used to verify dynamic stability of the system.  The 

energy of an individual discrete particle in the system consists of three parts:  kinetic 

energy, potential energy, and gravitational energy.  The energy is defined as: 

( ) iiiiciii gzmkIvme +++= 222 2/
2
1

2
1

2
1 εω    (5.29) 
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where 

im  is the mass of the discrete particle 

iv  is the translational velocity 

iω is the angular velocity 

cI  is the mass moment of inertia of the discrete particle with respect to 

the mass center 

k  is the stiffness of the normal contact (or stretch) 

iε  is the relative approach or stretch distance of two neighboring 

particles 

iz  is the particle altitude relative to the calculation datum 

The total energy of the system is the sum of each individual particle: 

∑
=

=
n

i
itotal eE

1
      (5.30) 

Figure 5.6 shows a stack of spherical elements used for the energy tests.  The bottom 

element is not allowed to move.  The remaining elements are stacked with no initial 

contact forces. 

 

Figure 5.6  Stack Balls Setup for Energy and Dynamic Relaxation Numerical 
Tests 
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If there are no interactions which cause mechanical energy loss, such as damping, 

friction, etc., and no energy is added to the system, the total energy of the system 

should be conserved.  For the energy test, the stack is assumed to be perfectly elastic.  

Under the only gravitational force, when the stack is released from the initial position, 

the elements will push into each other and continue to oscillate up and down forever, 

conserving total energy.  For the stack, the diameters of all elements are equal to 1 m.  

The specific weight of the material is 3000 kg/m3, the mass of each ball is 1.5708 kg 

and the gravitational acceleration is 9.81 m/s2.  The coordinate of the center of the 

bottom ball is set at (0, 0, 0).  The total energy of the stack at the beginning of the test 

is only gravitational energy, which equals 554.74 N-m.  Figure 5.7 shows, as 

expected, the total energy of the stack is constant, with some fluctuations due to the 

numerical approximation. 

 

Figure 5.7  Total Energy of Stack Ball 

5.5.4.2 Damping and Dynamic Relaxation (DR) Tests 

Damping and dynamic relaxation (DR) are major parameters and procedures in DEM 

modeling for two reasons.  First, the materials in this project are not elastic (i.e. 
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concrete and soil).  Stress wave propagating in the materials are attenuated with 

distance.  Second, since DEM is originally designed to solve dynamic problems with 

explicit integration for static (or pseudo static) problems, dynamic relaxation 

procedures (DR) must be performed in order to achieve convergence.  An excessively 

small damping coefficient leads to spurious vibrations during the dynamic transition 

between two static states.  This causes changes in the grain arrangement, since 

frictional material is very sensitive to vibrations.  If the damping coefficient is too 

large, the results will simulate viscous flow, a phenomenon which is more related to 

Stokes flow of immersed bodies. 

The same stack setup for the energy conservation test is used for the damping and DR 

tests.  The diameters of the balls, specific weight, and coordinates are the same as 

used in the energy test.  The validity of static convergence is verified by checking the 

displacement of the top ball on the stack under gravitation force alone.  Three cases 

were performed for the numerical tests: 

 The stack was released from the initial position without damping 

(restitute coefficient is zero).  This test is equivalent to the elastic 

energy test, except that the displacement of the top is recorded. 

 The same test as above with a restitution coefficient of 0.2 (damping 

and restitution are related by equation 5.27). 

 The adaptive numerical equilibrium DR test.  This algorithm is a 

numerical trial and error approach developed for fast convergence and 

stable solution.  The method is based on the equilibrium principle 

when the assembly system is under static state at equilibrium. 

As shown in Figure 5.8, the top element on the stack oscillates around its balance 

position when the system is released from its initial position without damping.  When 

the normal DR procedure is performed with damping, the vibration attenuates, and 
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the top element position approaches a static position at 7.86 after one thousand 

iterations.  Adaptive equilibrium DR shows that the top ball approaches the same 

static position faster.  The adaptive equilibrium DR has a dramatic advantage in 

computational efficiency when the system consists of a large number of particles (i.e. 

thousands or millions particles). 

 

Figure 5.8  Dynamic Relaxation Test Results 

5.5.4.3 Wave Propagation 

To validate the wave propagation behavior of the model, the impulse response of a 

non-linear 1D oscillating system is obtained.  The system is similar to the stack as 

described before, but with more elements, different material properties, and zero 

gravitational body forces.  The system consists of one hundred identical balls with 

individual mass m connected with nonlinear springs of stiffness k and dashpot c.  The 

model is simple, but useful for analyzing a wide range of dynamic systems, such as 

ionic polarization at the molecular level, the response of experimental devices such as 
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isolation tables and resonant instruments, the vibration of a foundation, and the 

seismic response of buildings.  For 1D problems, equation (5.15) can be written as: 

nninin xykycym =++ &&&      (5.30) 

where 

x is the time history of the input force.  In this numerical test, x is an 

impulse force. 

y is the time history of the displacement response.  Dots on y denote 

first and second derivatives. 

The specific weight of the material is 3000 kg/m3, the mass of each ball is 1.5708 kg, 

the gravitational acceleration is 0.0 m/s2, and the restitution coefficient is 0.3 (related 

to the damping coefficient by equation 5.28). 

A vertical impulse force is applied on the top ball at its center, and the bottom ball is 

not allowed to move.  The impulse P-wave propagates down the stack, and the wave 

reflects when it reaches the bottom element.  The acceleration of each ball is recorded 

in Figure 5.9.  A hundred signals are plotted as time vs. receiver distance from the 

source.  This figure clearly shows that the first arrival delay and attenuation with 

distance.  The first arrival is sharp, with higher frequency, for the receivers closer to 

the source, and flattens with distance.  The plot also shows the reflection from the 

bottom. 

The test shows that the model is able to successfully propagate waves in different 

materials with various boundary and initial conditions.  The model provides a 

fundamental and powerful tool for a wide range of geotechnical and civil engineering 

applications, such as refraction, reflection, reverse time, tomography, and other 
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inverse problems.  With the implementation of non-reflection boundary conditions, 

the model is also able to simulate wave propagation in semi-infinite or infinite media. 

 

Figure 5.9  1-D P-Wave Propagation in a Rod 
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